If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y-20y^2=5y
We move all terms to the left:
8y-20y^2-(5y)=0
We add all the numbers together, and all the variables
-20y^2+3y=0
a = -20; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-20)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-20}=\frac{-6}{-40} =3/20 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-20}=\frac{0}{-40} =0 $
| 4x=5/185 | | -1/2x+4=1/2+2 | | -7^2x=-84 | | 1/2(2x−6)+5=23x+9+7/3x | | 1/2x+(x-35)+(x-46)+x=360 | | 26=46-7(-2-1w) | | 0.14n=84 | | -7x2x=84 | | -7•2x=-84 | | 12(2x−6)+5=23x+9+7/3x | | –8b=–9b+10 | | -0.5(2x-8)=0.4+1.2x | | -7*(2x)=84 | | 2/3(4x–5)=8 | | -7*2x=-85 | | 5f=4f+6 | | -t/3+2=26 | | -1/2x+10=-2/4+5 | | A=(1/2)(b₁+b₂) | | 4(2y+4)=-30 | | 19-t=t-19* | | h(2)=8 | | N-8+5n=-8 | | −7y−12=4y+10 | | 0.3z+0.8=-0.1 | | P=72p-4= | | v/2=v/3-2 | | n/4+5=12 | | 4x-13=3-3x | | Y=10x+50=7 | | -5h+2(11-h)=-5 | | 2(3x-7)+4(3x+2)=6(5x+9)-54 |